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INTRODUCTION 
The fundamental problem of approximation of a function by 

interpolation on an interval paved way for the spectral 

methods which are found to be successful for the numerical 

solution of ordinary and partial differential equations. 

Spectral representations of analytic studies of differential 

equations have been in used since the days of Fourier. Their 

application to Numerical solution of ordinary differential 

equations refers, at least to the time of Lanczos[10]. 

Summary of survey of some applications is given in[8]. Some 

present spectral methods can also be traced back to the 

"'method of weighted residuals"' of Finlayson and 

Scriven[6].Spectral methods can be viewed as an extreme 

development of the class of discretization scheme for 

differential equations known as the Method of Weighted 

Residuals (MWR)[6]. In MWR, the use of approximating 

functions (called trial functions) is central. These functions 

are used as basis functions for a truncated series expansion of 

the solution. Another function called the test functions (also 

known as the weight functions) are used to ensure that the 

differential equation is satisfied as close as possible by the 

truncated series expansion. Among the spectral schemes the 

three most commonly used are the Tau, Galerkin and 

collocation (also called pseudo-spectral) methods. What 

distinguishes between these methods is the choice of the test 

functions employed. Galerkin and Tau method are 

implemented in terms of the expansion coefficients[5], 

whereas collocation methods are implemented in terms of 

physical space values of unknown function. Over the past two 

decades, spectral methods with their current forms appeared 

as attractive ways in most applications. Some more details on 

spectral methods could be seen in[9,11-13]. The basic idea of 

spectral methods to solve differential equations is to expand 

the solution function as a finite series of very smooth basis 

functions, as given below: 
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where, Ti represents Chebyshev or Legendre polynomials[14] 

(for more on Chebyshev polynomials). 

If     [   ]the error produced by the approximation 

approaches zero with exponential rate[4] as N becomes too 

large (tends to infinity). This phenomenon is referred to as 

'spectral accuracy [8]. The accuracy of the derivative 

obtained by direct term-by-term differentiation of such 

truncated expansion naturally deteriorates [4], but for low-

order derivatives and sufficiently high-order truncations this 

deterioration is negligible, compared to the restrictions in 

accuracy introduced by typical difference approximations. In 

[2] and[3], the researchers focused on differential equations 

in which one of the coefficient function or solution function 

is not analytic on the interval of definition. Weak aspect of 

spectral methods in solving this kind of problems were 

studied in[2] and[3] and the researchers came up with 

modifications to the spectral method which proved to be 

more efficient when compared with existing ones. In this 

article, we present a variation of the spectral Galerkin method 

to solve the problems The spectral Galerkin method (the 

method introduced in this article) is seen to be efficient and 

competes favorable with other wellknown standard methods 

like the Tau method, and the Pseudo-spectral (collocation) 

method. 

 

DIFFERENTIAL EQUATION SOLVERS 
The Weighted Residual Method 
Mathematically, following system can be considered: 

uxforxSxLu  )()(   (1) 

uyforyu  0)(   (2)  

Where  

L  & S = linear differential operators.  

A function „u‟ is considered permissible solution of this 

system, if Eq. (2) is satisfied exactly and if residual (R  S – 

Lu) becomes small. In order to quantify what the meaning of 

this “small” is, the weighted residual method depends on (N 

+ 1) tests functions n  and scalar product of R with these 

functions becomes zero: 
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This is clear that with the increase of  N  the solution 

becomes more close to the exact solution . Different types of 

spectral solvers can be generated by selection of spectral 

basis and test function. Now we will present the three most 

popular methods in the following and we will apply them for 

very simple case, 

A Test Problem 
A TEST PROBLEM 

We suggest for the solution of the equation: 

)()(4)(4)( xfxuxuxu   (4) 

with ]1,1[x  and  )exp()( xxf ).1/(4 2ee   As 

boundary conditions, it is  simply asked that at the 

boundaries, the  solution becomes zero ” 

0)1( u  and   0)1( u  (5) 

The solution is unique under those conditions 
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Let‟s consider that the solution of this equation is not a 

polynomial. 

Linear operator will be: 

L     =      Id
dx

d

dx

d
44

2
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Using the elementary linear operations. 

One can build the matrix representation of L, which will be 

useful in the implementation of the different solvers. 

Let u      =     )x(Ta
N
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Then 
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N
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For  this case, and for N equal to  four (4), 

Lij = 
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The Tau-Method 

In this method, the test functions n  are selected to be 

identical as the spectral functions of decomposition. Let us 

use the Chebyshev polynomials Ti. The residual equations (3) 

are then: 

  NnSLuTn  0,  (8) 

By using the definition of the matrix Lij, these equations 

can be written as 
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where the ns~ are the spectral coefficients of the source S. 

However, due to the presence of homogeneous solutions of L, 

this set of N + 1 equations are degenerated and by imposing 

the boundary conditions before solution. In the Tau-method, 

the boundary conditions are imposed as extra equations. In 

our special case these can be written: 
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Last two residual equations is relaxed and replaced by two 

boundary conditions to find an invertible system having an as 

unknowns. Relaxing the last two equations is not a problem. 

Indeed, if the function is regular, the coefficients arc quickly 

lessening and so the solution should come close to the exact 

solution. 

In this example, and for N equal to four the matrix 

format of equation is  
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
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The solution is : 

0a   =  0.1453773585 

1a   =  0.07863207547 

2a   =  –0.1218396226 

3a   =  –0.07863207547 

4a   =  –0.02353773585 

Table (1) shows the comparison of numerical solution and 

exact solution. 
Table – 1: Numerical Solution Obtained 

Points  

xi 

Exact 

Solution 

Numerical 

Solution  

Error 

0x –1 0 0 0 

1x –0.75 0.0760391889

8 

0.0497449882

3 

0.0262942007

5 

2x –0.5 0.1633006009 0.1001179245 0.0631825164 

3x –0.25 0.2582412532 0.1657650354 0.0924762178 

4x 0.0 0.3519457263 0.2436792453 0.108266481 

5x 0.25 0.4257678471 0.3132001769 0.1125676702 

6x 0.5 0.4438970559 0.3360141509 0.107882905 

7x 0.75 0.3407840021 0.2561541863 0.0846298158 

8x 1.00 0 0 0 

 

Fig. (1) shows the comparison of numerical solution and 

exact solution. 
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Fig. 1     The Tau Method for N = 4 

PSEUDOSPECTRAL METHOD 

We will use the spectral approximation for N = 4 

U = 


4

0i

ii Ta  

U = a0T0 - a1T1 + a2T2 + a3T3 + a4T4   ............... (12) 

 u(–1) = a0 – a1 + a2 – a3 + a4 = 0  ............... (13) 

 u(1) = a0 + a1 + a2 + a3 + a4 = 0  ............... (14) 

u  = a1T0 + a2(4T1) + a3 (6T2 + 3T0) + a4(8T3 + 8T1) 

u   = 4a2T0 + 24a3T1 + a4 (48T2 + 32T0) 

Given equation becomes 

 4a0 T0 + 4a1 (T1 – T0) + 4a2 [2T0 – 4T1 + T2] +4a3 [– 

3T0 + 6T1 – 6T2 + T3]+4a4 [8T0 + 8T1 + 12T2 – 8T3 + T4] =  

2

x

e1

e4
e


  

2

1
x  

43210 28)21012()284()224(4 aaaaa  = -

0.8030 

x = 0  2961.01212044 43210  aaaaa  

2

1
x 

43210 28)21012()284()224(4 aaaaa 

7320.0  

The matrix form for the pseudospectral method is: 

(When N equal to four) 
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The solution is : 

0a  = 0.1875410023 

1a  = 0.08866783409 

2a  = –0.1565058909 

3a  = –0.08866783409 

4a  = –0.03103511136 

Table (2) shows the comparison of numerical solution and 

exact solution 

 
Table – 2:  Numerical Solution Obtained 

Points  

xi 

Exact 

Solution 

Numerical 

Solution  

Error 

0x –1 0 0 0 

1x –0.75 0.07603918898 0.08166649782 –

5.62730884×10
–

3
 

2x –0.50 0.1633006009 0.1483097523 0.0149908486 

3x –0.25 0.2582412532 0.2248701595 0.0333710937 

4x 0.0 0.3519457263 0.3130117818 0.0389339445 

5x 0.25 0.4257678471 0.3911223484 0.0346454987 

6x 0.50 0.4438970559 0.4143132546 0.0295838013 

7x 0.75 0.3407840021 0.3144195623 0.0263644398 

8x 1.00 0 0 0 

 

Fig. (2). shows the comparison of numerical solution  and 

exact solution 

 
Fig. 2.    Pseudospectral Method for N = 4 

THE SPECTRAL GALERKIN METHOD (N = 4) 

We will use the Spectral approximation for N = 4. 

Let u = 


4

0i

ii Ta  

=  a0 T0 + a1 T1 + a2 T2 + a3 T3 + a4 T4  (16) 

The basic idea of the Galerkin method is to expand the 

solution, not in terms of usual orthogonal polynomials, but on 

some linear combinations of polynomials that fulfill the 

boundary conditions. One then talks of Galerkin basis. The 

particular choice of basis is of course important and it is 

rather hard to give a general recipe. However, it is usually 

0
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better if the Galerkin basis can be easily written in terms of 

the original basis. 

For the boundary conditions of our example, it is easy to see 

that the following choice of Galerkin basis i  is a valid one: 

 )x(T)x(T)x( 02k2k2    

 )x(T)x(T)x( 13k21k2    

Note that i ‟s are not orthogonal polynomials 

u = 


2

0i

iib  =


4

0i

ii Ta  

u = b0 (2x
2
 – 2) + b1 (4x

3
 – 4x) + b2 (8x

4
 – 8x

2
)  ............... (17) 

u = – T0 (b0 – b2) - b1T1 + b0T2 + b1T3 + b2T4  ............... (18) 

Differentiate with respect to x in equation (17) 

u = 2b1T0 + 4T1 (b0 + 2b2) + 6b1T2 + 8b2T3  ............... (19) 

Differentiate with respect to x in equation (19) 

u  = 4T0 (b0 + 8b2) + 24b1T1 + 48b2T2 

Then given equation becomes 

4[-2b1 + 7b2] T0 + 4 [-4b0 + 5b1 – 8b2] T1 + 

 4[b0 - 6b1 + 12b2] T2 – 4  [8b2 – b1] T3 + 4b2T4 = e
x
 - 

2e1

e4


 

The Residual equations (3) are then:  

      (i, R) = 0                      i = 0, 1, 2 

  2b0 – 4b1 – 4b2 = 0.5208457121  ............... (20) 

  8b0 – 8b1 + 0b2 = -1.705855528  ............... (21) 

  8b1 – 26b2 = 0.1029807468  ............... (22) 

The matrix format of the Galerkin method is: (When N 

equal to four) 
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2680

088

442

2

1

0

b

b

b







 

The Galerkin coefficients are: 

b0  =  –0.1596460858 

b1  =  –0.09177225092 

b2   =  –0.02949837681 

and the standard ones: 

a0  =  0.1891444626 

a1   =  0.09177225092 

a2   =  -0.1596460858 

a3   =  -0.09177225092 

a4   =  -0.02949837681 

Table (3) shows the comparison of numerical solution 

and exact solution 
Table – 3: Numerical solution Obtained 

Points  

xi 

Exact  

Solution  

Numerical 

Solution 

Error 

x0 = -1 0 0 0 

x1 = -0.75 0.076039188

98 

0.077314175

08 

–

1.2749861x10
-3

 

x2 = 0.5 0.163300600

9 

0.146058317

5 

0.0172422834 

x3 = -0.25 0.258241253

2 

0.227127289

8 

0.0311139634 

x4 = 0.0 0.351945726 0.319292171 0.326535547 

3 6 

x5 = 0.25 0.425767847

1 

0.399200260

2 

0.0265675869 

X6 = 0.5 0.443897055

9 

0.421375070

3 

0.0225219856 

x7 = 0.75 0.340784002

1 

0.318216333

7 

0.0225676684 

x8 = 1 0 0 0 

 

Fig. (3). shows the comparison of numerical solution and 

exact solution 

 
Fig. 3    The Galerkin Method for N=4 

COMPARISON OF EXACT SOLUTION WITH TAU, 

PSUDOSPECTRAL AND GALERKIN 

In the Figure (4) the blue line indicates the solution of 

linear second order boundary value problem while the red, 

green and black lines indicate the numerical solution obtained 

using Spectral Galerkin Method, Pseudospectral Method and 

Spectral Tau Method respectively. It is clear from graph; the 

results obtained by Spectral Galerkin Method are very close 

to exact solution. It is clearly seen that Galerkin‟s Method 

gives more accurate solution as compared to the 

Pseudospectral and Tau. 

 
Fig. 4    Results for N = 4 

  

0

0.1

0.2

0.3

0.4

0.5

-1 -0.5 0 0.5 1

x

Numerical solution

Exact Value

0

0.1

0.2

0.3

0.4

0.5

-1 -0.5 0 0.5 1

x

GALERKIN RESULT

COLLOCATION RESULT

TAU RESULT

EXACT RESULT



Sci.Int.(Lahore),27(3),1791-1796,2015 ISSN 1013-5316; CODEN: SINTE 8 1795 

May-June 

 

SPECTRAL GALERKIN METHOD FOR N = 8 

Now, solving the same problem taking  N = 8 

The matrix format for the Galerkin method is   (When N 

equal to 8) 
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

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1

0
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b
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b
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The Galerkin coefficients are 

0b   =  –0.1749792094  

1b   =  –0.09352919879 

2b   =  –0.02740017008 

3b   =  –5.824766329 × 10
–3

 

4b   =  –9.912187319 × 10
–4

 

5b   =  –1.447543067 × 10
–4

 

6b   =  –1.862085517 × 10
–5

 

and the standard ones 

0a   =  0.2033892191  

1a   =  0.0994987194 

2a   =  –0.1749792094 

3a   =  –0.09352919879 

4a   =  –0.02740017008 

5a   =  –5.824766329 × 10
–3 

6a   =  –9.91218739 × 10
–4

 

7a   =  –1.447543067 × 10
–4

 

8a   =   –1.862085517 × 10
–5

 

Table (4). shows the comparison of numerical solution 

and exact  solution 
Table – 4: Numerical Solution Obtained 

Points  

xi 

Solution  Exact  

Solution  

Error 

–1 0 0 0 

–0.75 0.0760542845 0.07603918898 –1.50955x10-5 

–0.5 0.1633032024 0.1633006009 –2.6015x10-6 

–0.25 0.2582358038 0.2582412532 5.4494x10-6 

0.0 0.3519408563 0.3519457263 4.87x10-6 

0.25 0.4257682052 0.4257678471 –3.581x10-7 

0.5 0.4438907987 0.4438970559 6.2572x10-6 

0.75 0.3407810688 0.3407840021 2.9333x10-6 

1.00 0 0 0 

 

Fig. (5) shows the comparison of numerical solution and 

exact  solution 

 
Fig. 5    The Galerkin Method for N=8 

COMPARISON BETWEEN EXACT SOLUTION and  

GALERKIN METHOD (N equal to four & N equal to 

eight) 

In the Figure (6) the pink doted line indicates the exact 

solution of linear second order boundary value problem while 

the blue and red lines indicate the numerical solution 

obtained using Spectral Galerkin Method for N = 8 and N = 4 

respectively. It is clear from graph, the results obtained by 

spectral Galerkin Method for N = 8 are very close to exact 

solution. It is clearly seen that Galerkin Method for N = 8 

gives more accurate solution as compared to Galerkin 

Method for N = 4. 

 
Fig. 6    Comparison of Results for N = 4 and N = 8 

 
CONCLUSIONS 
The Spectral Methods are used to solve linear second order 

boundary value problem for ordinary differential equation. 

We also studied the accuracy of the developed scheme. 

Problem is solved numerically using spectral Methods. The 

numerical results are then compared with the exact solution. 

It is observed that Spectral Galerkin Method gives more 

accurate solution as compared to Pseudospectral 

(Collocation) Tau.  

It is also observed that accuracy of the results by using 

Spectral Galerkin Method can be improved by increasing the 

number of terms. We note that, the solution obtained by 

Spectral Galerkin Method is very close to exact solution for 

N = 8 as compared to results obtained for N = 4. 
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